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Signatures of chaos in the entanglement of two coupled quantum kicked tops

Paul A. Miller and Sarben Sarkar
Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom

~Received 19 October 1998!

We investigate the rate at which two initially decoupled quantum kicked tops become entangled upon the
introduction of an interaction between them. We find that the entanglement eventually increases linearly in
time. Moreover, we find that the rate of this linear increase is itself a linear function of the sum of the positive
Lyapunov exponents when averaged over initial points drawn from the classical distributions corresponding to
the initial quantum product state. The entanglement measure that is used allows us to identify entanglement
with sensitive dependence on initial conditions.@S1063-651X~99!07005-1#

PACS number~s!: 05.45.Mt
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I. INTRODUCTION

Some previous approaches to the subject of quan
chaos@1–4# have been concerned with the behavior of cl
sically unstable and classically chaotic quantum systems
ter they are coupled to heat baths@5–11#. These heat bath
have typically been modeled by an infinite collection of h
monic oscillators with definite spectral densities. The infin
number of extra degrees of freedom introduced and su
quently traced over are intended to model the influence
the rest of the Universe@12,13# on the system; energy los
will never return@14#. The hope is that the decohering effe
of the environment will restore the classical-quantum cor
spondence which was under threat from classical chaos@6#.

The price exacted for the restoration of this corresp
dence is an increase in the system entropy or, equivale
loss of knowledge about the state of a system. This lead
an increase in entanglement in a very precise way. One
ticular model, that of an inverted harmonic oscillator, h
been shown to be useful as a guide to physical intuition
this context. It has been shown@6,15# that for weak coupling
to a heat bath, the von Neumann entropy of the redu
dynamics will eventually increase at a rate which is appro
mately equal to the classical quantity analagous to
Lyapunov exponent. However, in an analysis of the op
quantum behavior of thegenuinelychaotic kicked rotor@11#
it was found that the von Neumann entropy of the redu
dynamics increases at a rate which is alinear functionof the
Lyapunov exponent averaged over the points which co
prise the classical state analagous to an initial quantum
herent state in phase space. Thus, the intuition gleaned
the study of the inverted oscillator is valid despite its ma
fold deficiencies as a model of true classical chaos@15#.

A natural question to ask at this stage, therefore, is
following: how ubiquitous a phenomenon is the linearity
entropy increase in time, with a rate determined by a m
sure of the underlying classical chaos? In particular, i
thermal bath with an infinite number of degrees of freed
essential or could a finite chaotic system act in the sa
way? To address this question we must first remind ourse
of the reasons for entropy increase in quantum systems.
tropy increase, or an increasing lack of knowledge about
state of the system, results from the coupling of the system
another system, evolving the two together using a jo
PRE 601063-651X/99/60~2!/1542~9!/$15.00
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Hamiltonian, and then tracing over the degrees of freed
which are of no interest to us. The resultingreduceddensity
matrix is then used to calculate the von Neumann entro
An increase of the entropy implies that the two coupled s
tems have becomeentangledby the time at which the en
tropy is calculated, i.e., quantum correlations have dev
oped. It will be essential to define measures of entanglem
which can then be compared to entropy increase.

We shall therefore consider the increase in entanglem
with time of two coupled quantum systems, in particular tw
coupled quantum kicked tops. Recently at aqualitative level
Furuya et al. @16# have recently taken a similar approac
with a different choice of system. One of the reasons for
choice is that the single kicked top is a much studied a
well known @4,17–22# model of classical and quantum
chaos. Its quantum dynamics is that of a spin-j particle pre-
cessing about a fixed axis but which is also perturbed
‘‘kicked’’ periodically in time. Moreover, the finite dimen-
sionality of its Hilbert space, viz., 2j 11, makes it a conve-
nient system to study since it eliminates the need for a tr
cation of the Hilbert space.

This paper is organized as follows. In Sec. II we w
discuss the measure of entanglement we have used here
the reasons for choosing it. We then proceed to define b
the quantum and the classical dynamics of the coup
kicked tops in Sec. III. In Sec. IV we define the initial dire
product states used in the quantum analysis and their cla
cally analagous distributions. The results of our numeri
investigations are presented in Sec. V and we conclud
Sec. VI.

II. ENTANGLEMENT MEASURES

We will now discuss a way of quantifying entangleme
which will be crucial to the development. One measure
the entanglement in a states, E(s), is the ‘‘distance’’ from
the state to the set,D, of all disentangled states defined b
Vedral et al. in Refs.@23–25#:

E~s!ªmin
rPD

D~sir!, ~1!

whereD(sir) is anymeasure of the distance~not necessar-
ily a metric! between the statess and r such that some
reasonable conditions are satisfied byE(s). There are a
1542 © 1999 The American Physical Society
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PRE 60 1543SIGNATURES OF CHAOS IN THE ENTANGLEMENT OF . . .
number of advantages to this definition@23#. First, it is con-
structed especially in order to distinguish between quan
and classical correlations, being only nonzero for the form
Second, it is independent of the number of systems be
considered. Finally, it is independent of the dimensiona
of these systems. It is, therefore, a very general and us
definition of a measure of entanglement.

A natural question to ask, of course, is what, if any, d
tance measureD(sir) will enable the quantityE(s) of Eq.
~1! to satisfy the given criteria and thereby render it
‘‘good’’ measure of entanglement. Just such a suitable fu
tion was also proposed by Vedralet al. @23–25#; namely, the
quantum relative entropydefined by

D~sir!5S~sir!ªTr@s~ ln s2 ln r!#. ~2!

This definition, together with Eq.~1!, defines a measure o
entanglement known as therelative entropy of entanglemen:

E~s!ªmin
rPD

Tr@s~ ln s2 ln r!#. ~3!

This also provides us with anoperationalinterpretation of
entanglement@23–25#: the greater the entanglement of
states, the fewer measurements on a separable stater it will
take to prevent confusion withs.

One more particularly important reason for restricting o
attention toE(s) defined in Eq.~3! is the considerable sim
plification that arises in the case of pure states,s. For pure
entangled states the relative entropy of entanglement red
to the von Neumann entropy ofeither oneof the subsystems
of the entangled pair@23#. Thus, when Trs25Tr s51, we
have

E~s!52Tr@sA ln sA#52Tr@sB ln sB#, ~4!

where

sAªTrB@s#, sBªTrA@s#. ~5!

We will only consider pure states in this paper. This fa
means that we need only calculate the~reduced! von Neu-
mann entropy in order to determine the level of entanglem
at any time. This amounts simply to a diagonalization
either one of the reduced density matrices. But the reduc
of the measure of entanglement to the von Neumann ent
of either subsystem is also propitious in another way: we
now directly compare linear rates of entanglement incre
— if, of course, they arise — with underlying measures
chaos in the hope that the relationship found will provi
further evidence for the conjecture that classical instabi
begets quantum instability.

III. COUPLED KICKED TOPS

A. Quantum dynamics

Each kicked top is simply a spin-j particle with an angu-
lar momentum vectorJr[(Jxr

,Jyr
,Jzr

), r 51,2, the compo-
nents of which obey the standard commutation relations.
example,@Jxr

,Jyr
#5 iJzr

and @Jr
2 ,Jzr

#50,r 51,2, etc. How-
ever, the angular momentum operators of different tops a
commute, e.g.,@Jx1

,Jy2
#50, etc., and we can therefor
m
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choose the simultaneous eigenvectors of the set of four
tually commuting operatorsJ1

2 ,J2
2 ,Jz1

, and Jz2
to be our

choice of basis. We note that Planck’s constant has been
to unity in the treatment that follows. The Hamiltonian of th
coupled kicked tops can be now be written:

H~ t !5H11H21HI5
p

2
Jy1

1
k

2 j
Jz1

2 (
n52`

`

d~ t2n!1
p

2
Jy2

1
k

2 j
Jz2

2 (
n52`

`

d~ t2n!1
k«

j
Jz1

Jz2 (
n52`

`

d~ t2n!.

~6!

TheJyr
terms describe the precession of each top around

y axis, each with an angular frequency ofp/2. The remaining
terms are due to a periodicd-function ‘‘kick.’’ The first two
such terms describe, respectively, impulsive nonlinear ro
tions or ‘‘twists’’ about eachz axis, with each constant o
proportionality being given by the dimensionless factork/2 j .
The third and final such term describes the coupling betw
the tops using a spin-spin interaction term with a stren
characterized by a dimensionless coupling constantk«/ j .
Thus, the interaction is introduced as a consequence of
kick.

If we set the coupling constant,«, equal to 0 in Eq.~6!,
then we will have a completely separable Hamiltonian d
scribing the evolution of two noninteracting kicked tops. L
us examine the first of these tops. Its Hamiltonian is

H1~ t !5
p

2
Jy1

1
k

2 j
Jz1

2 (
n52`

`

d~ t2n!, ~7!

and the commutation relations can be used to sh
@J1

2 ,H1(t)#50, also@J1
2 ,Jx1

#50, and similarly forJy1
and

Jz1
. The basis vectors are then chosen as the eigenvecto

J1
2 andJz1

@26# are denoted byu j ,m1& and obey

J1
2u j ,m1&5 j ~ j 11!u j ,m1&, ~8!

Jz1
u j ,m1&5m1u j ,m1&. ~9!

As j will be fixed in the following, we henceforth writeum1&
for u j ,m1&. Both the classical and quantum features of t
kicked top have been studied in some depth by various
thors @4,19,20#.

We will restrict our discussion to the@(2 j 11)3(2 j
11)#-dimensional product space spanned by the eigenv
tors of the operatorsJ1

2 ,J2
2 ,Jz1

, andJz2
. The basis kets can

then be writtenu j ,m1 , j ,m2& and are simply the tensor prod
uct of two single top basis kets, i.e.,

u j ,m1 , j ,m2&5u j ,m1& ^ u j ,m2&. ~10!

In a similar shorthand to that used above, we hencefo
write um1 ,m2& for u j ,m1 , j ,m2&. They obey the eigenvalue
equations

J1
2um1 ,m2&5 j ~ j 11!um1 ,m2&, ~11!
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J2
2um1 ,m2&5 j ~ j 11!um1 ,m2&, ~12!

Jz1
um1 ,m2&5m1um1 ,m2&, ~13!

Jz2
um1 ,m2&5m2um1 ,m2&. ~14!

The unitary time evolution operator corresponding to
Hamiltionian of Eq.~6! is

U tops5U«
12U1 U25Uk

1 Uk
2 U«

12U f
1 U f

2 ~15!

in which the various terms are given by

Ur
ªUk

r U f
r , ~16!

i.e., the evolution operator of a single kicked top,

Uk
r
ªexpS 2

ik

2 j
Jzr

2 D , ~17!

U f
r
ªexpS 2

ip

2
Jyr D , ~18!

and

U«
12
ªexpS 2

ik«

j
Jz1

Jz2D ~19!

for r 51,2. It describes the free rotation of each top about
y axis followed by the introduction of the kick which give
each top a twistandcouples them instantaneously. Note th
the free evolution is assumed to have a negligible effect d
ing the kick. The convenient separation of terms in Eq.~15!
is a result of both thed-function kick and the fact that op
erators corresponding to different tops commute.

In the Schro¨dinger picture the powersU tops
n describe the

evolution of an initial state of the system up to any one of
discrete sets of timesn51,2, . . . .Thus

uc~n!&5U tops
n uc~0!&, ~20!

where the initial stateuc(0)& may already be an entangle
state of the two tops. This is the method we will use to iter
our system in the numerical work that is discussed below

B. Classical dynamics

We use the Heisenberg picture to determine the class
analog of our coupled top system. Now, of course, the
erators change in time according toÂ(n11)
5U tops

21 Â(n)U tops. We wish to determine the explicit form o
the Heisenberg equations of motion for each of the six
gular momentum operators of the system.

As an explicit example we will consider the time evol
tion of Jx1

. Using Eq.~15! we find
e

s

t
r-

e

e

al
-

-

U tops
21 Jx1

U tops5
1

2
~Jz1

1 iJy1
!expF ik

j S 2Jx1
1

1

2D G
^ expS 2

ik«

j
Jy2D1

1

2
~Jz1

2 iJy1
!

3expF2
ik

j S 2Jx1
1

1

2D G ^ expS ik«

j
Jy2D .

~21!

Similar equations hold for the other five angular moment
operators.

The introduction of a new set of rescaled angular mom
tum operators will facilitate the determination of the classi
limit of our system. We define

Xr[~Xr ,Yr ,Zr !ª
Jr

j
[

1

j
~Jxr

,Jyr
,Jzr

! ~22!

for r 51,2. We can now write the full Heisenberg equatio
of motion for these rescaled angular momenta. For exam
Eq. ~21! becomes

X185
1

2
~Z11 iY1!expF ikS 2X11

1

2 j D G ^ exp~2 ik«Y2!

1
1

2
~Z12 iY1!expF2 ikS 2X11

1

2 j D G ^ exp~ ik«Y2!,

~23!

and similar equations are obtained for the other five ang
momentum operators.

To determine the classical equations of motion cor
sponding to the Heisenberg equations of motion such as
~23! above, we must take the limitj˜`. To see this, con-
sider the angular momentum commutation relations o
more. In their rescaled form they become, for examp
@Xr ,Yr #5 iZr / j for r 51,2. So, in the limit ofj˜` we can
easily see that the rescaled angular momentum variable
erators will commute and becomec-number variables. Their
stroboscopic time evolution in this situation will therefore
given by the Heisenberg picture equations in the largj
limit. If we first define

J1ªk~X11«Y2!, ~24!

J2ªk~X21«Y1!, ~25!

then we find

X185Z1 cos~J1!1Y1 sin~J1!, ~26!

Y1852Z1 sin~J1!1Y1 cos~J1!, ~27!

Z1852X1 , ~28!

X285Z2cos~J2!1Y2 sin~J2!, ~29!

Y2852Z2 sin~J2!1Y2 cos~J2!, ~30!

Z2852X2 , ~31!
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as our classical map. We therefore see that not only do
rescaled angular momentum variables becomec-number
variables asj˜`, but in this limit eachXr , r 51,2, is also
forced to lie on the unit sphere, i.e.,Xr

251,r 51,2.
In the limit of negligible coupling between the tops, i.e

as «˜0, we can see thatJ r˜kXr , r 51,2. The classica
equations of motion for our system then decouple into
equations of motion for two single, unperturbed tops@4#, as
required. The classical equations of motion for one such
coupled top can be written~dropping subscripts!

X85Z cos~kX!1Y sin~kX!,

Y852Z sin~kX!1Y cos~kX!, ~32!

Z852X.

These classical equations have been studied in depth
Haake in@4# and D’Arianoet al. in @19#. The variablesX,Y,
and Z lie on the unit sphere,X21Y21Z251, and this re-
striction renders the classical map two dimensional. This
provides us with the opportunity to reparametrize it us
only the two usual polar and azimuthal anglesu and f,
respectively, according to

X5sinu cosf,

Y5sinu sinf, ~33!

Z5cosu.

Moreover, the coordinatesZ5cosu andf5arctan(Y/X) are,
in fact, canonical coordinates on the sphere@4#, and the clas-
sical map of Eq.~32! is a canonical transformationwith a
unit Jacobian. The map of Eq.~32! is therefore area preserv
ing, with the infinitesimal area element on the unit sph
beingdS5sinududf.

The classical trajectories generated by Eq.~32! depend for
their character on the twist parameter,k. Whenk50 the map
describes a perfectly regular rotation around theY axis. In-
creasingk, however, sees the familiar KAM scenario@2,4,19#
with an increase in the area of the sphere covered by cha
trajectories until, at approximatelyk56, no visible stable
islands exist and most trajectories are chaotic. In this st
we will be interested in a regime residing between these
extremes of regular and chaotic behavior. That is to say,
will choosek53 and consider the effect of an unequivoca
mixed phase space on the quantum dynamics.

In Fig. 1 we give the classical phase space plot o
kicked top whenk53. The parametrization byf and u is
particularly convenient as a means to represent the surfac
the unit sphere on a two-dimensional surface. There
prominent islands of stability in a chaotic sea, giving us
truly mixed phase space. Two areas will, however, be
particular interest to us in the following and are marked b
filled square and triangle. The first clearly resides in a sta
island on the sphere. This island@4# surrounds a fixed poin
of the classical map given above and has coordina
(u r ,f r)5(2.25,0.63). The second, marked by the filled t
angle, is, by contrast, in the chaotic sea and nowhere ne
regular island. Its coordinates are (uc ,fc)5(0.89,0.63).
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Of course, while phase space plots are useful for giv
some indication of the qualitative features of the dynami
they clearly do not give any quantitative information. In o
der to connect rates of quantum entanglement to measur
classical chaos, it is this information which is of intere
This is where the Lyapunov exponents become import
and in the following we will show how to calculate th
Lyapunov exponents of our coupled top system. Fi
though, we must describe the initial states used in both
quantum and classical numerical work that follows.

IV. INITIAL STATE

A. Quantum states

We wish to compare the classical and quantum evoluti
of our system. For this purpose we require initial quantu
states which best approximate an initial classical state on
sphere given by, for example, (u0 ,f0). If we recall that co-
herent states are the ‘‘most classical’’ states of the harmo
oscillator@26#, then it will come as no surprise that cohere
minimum uncertainty states are suitable here too.

1. Directed angular momentum states

The coherent states we will choose to work with are
directed angular momentum states@4,19–21#, denoted by
uu0 ,f0&. For a single top these states align the vectorJr
along the direction from the origin to the point on the sphe
parametrized by (u0 ,f0), i.e.,

nu0f0
•Jr uu0 ,f0&5 j uu0 ,f0&, ~34!

wherenu0f0
is a unit vector pointing in the direction give

by u0 and f0. These states can be conveniently genera
using the eigenstateu j , j & (u j & in our notation! using a unitary
rotation operator; in general,

uu0 ,f0&5exp$ iu0~Jx1
sinf02Jy1

cosf0!%u j , j &. ~35!

The sense in which the directed angular momentum st
such a uu0 ,f0& ‘‘best’’ approximate the classical initia
states (u0 ,f0) on the sphere can be seen from the followin
First, the variance of the vectorJr in such a state is given by
@20#

FIG. 1. Phase space plot for a single kicked top withk53. The
filled square and triangle mark areas of generically regular and
otic behavior, respectively.
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1

j 2
$^u0 ,f0uJr

2uu0 ,f0&2^u0 ,f0uJr uu0 ,f0&
2%5

1

j
, ~36!

and obviously goes to 0 as we take the classical limit oj
˜`. This is the minimum allowed by the angular mome
tum commutation relations. Second, it is shown by Sch
et al. in Ref. @21# using the Husimi representation of th
coherent stateuu0 ,f0& that it is very small outside a regio
with a radius of about 2/Aj radians around the center poi
(u0 ,f0) on the sphere. Explicitly, ifa is the angle between
the direction of the two points (u0 ,f0) and (u08 ,f08) on the
sphere, then the square of the modulus of the overlap
tween the associated directed angular momentum s
uu0 ,f0& and uu08 ,f08& is given by@21#

Q~a![ z^u0 ,f0uu08 ,f08& z2'exp~2 j a2/2! ~37!

for sufficiently large j. Clearly then, Q(a52/Aj )
5e22Q(0), a significant decrease. However, we can a
look upon the function Q(a) as giving an as-yet-
unnormalized Gaussian probability distribution for a dev
tion from the center in the direction (u0 ,f0). When normal-
ized ~denoted by the superscriptN) this takes the form

QN~a!5
1

sA2p
expF2

1

2 S a

s D 2G , ~38!

wheres is the standard deviation and is given bys51/Aj .
Clearly we haveQN(a52/Aj )5e22QN(0) here too.

In the following we will choosej 580, which gives an
effective radius for our initial states of'0.22 radians. We
have shown that this is sufficiently small to enable the qu
tum system to discern classical phase space structures
as those shown in Fig. 1.

However, we will require an explicit representation of t
coherent states for calculations. As we will be working in t
um1& basis for single top calculations and a tensor produc
these for the coupled tops, we would like to expressuu0 ,f0&
as a superposition of these basis elements,m152 j , . . . ,
1 j . It is found @4#

^ j ,m1uu0 ,f0&5~11gg* !2 jg j 2m1AS 2 j
j 1m1

D , ~39!

wheregªexp(if0)tan(u0 /2).

2. Initial tensor product state

For every initial state of thecoupledtop system, we will
choose a direct product of two coherent states of the t
described above. Explicitly,

uc~0!&5uu0
1 ,f0

1& ^ uu0
2 ,f0

2&, ~40!

with the evolution up to the~discrete! time n being given by

uc~n!&5U tops
n uc~0!&, ~41!

where U tops has been defined in Eq.~15!. Because of the
separable nature of Eq.~40!, we may use Eq.~39! to write
our initial state in theum1 ,m2& representation discusse
above. Explicitly,
-
k

e-
tes

o

-

-
uch

f

e

uc~0!&5 (
m1 ,m252 j

1 j

^m1 ,m2uc~0!&um1 ,m2&

5 (
m1 ,m252 j

1 j

^m1uu0
1 ,f0

1&^m2uu0
2 ,f0

2&um1 ,m2&,

~42!

where, for example, each of^mr uu0
r ,f0

r &, r 51,2, can be de-
termined from Eq.~39!.

B. Classical states

For the purpose of comparing the classical evolution o
single top to its quantum evolution, we must now constru
initial classicaldistributionson the unit sphere analagous
the directed angular momentum states defined above.
example, in order to construct a classical state analagou
the stateuu0 ,f0&, we add to each of the anglesu0 and f0
which define its center thedeviation anglesdu0 and df0,
respectively. These deviations are drawn from the norm
ized probability distribution defined in Eq.~38! above.

Furthermore, classical distributions analagous to the
tial tensor product state of Eq.~40! above will be comprised
of points of the form (u0

11du0
1 ,f0

11df0
1 ,u0

21du0
2 ,f0

2

1df0
2) calculated in a similar manner.

V. NUMERICAL RESULTS

A. Iteration scheme

We can determine the matrix representation of an a
trary stateuc(n)& at timen from Eq. ~15!. We find

^s1 ,s2uc~n!&5 (
r 1 ,r 252 j

1 j

^s1 ,s2uU«
12ur 1 ,r 2&

3^r 1 ,r 2uU1 U2 uc~n21!&

5expS 2
i

j
k«s1s2D (

m1 ,m252 j

1 j

$^s1uU1um1&

3^s2uU2um2&^m1 ,m2uc~n21!&%, ~43!

where@17#

^s1uU1um1&5expS 2
ik

2 j
s1

2D ^s1uU f
1um1&

5expS 2
ik

2 j
s1

2D ~21!s12m1

2 j

3S 2 j
j 2s1

D 1/2S 2 j
j 1m1

D 21/2

3(
k

~21!kS j 2s1

k D S j 1s1

k1s12m1
D . ~44!

The reduceddensity matrixr1(n) is determined from the
entire, pure density matrixr(n) using

r1~n!ªTr2@r~n!#, ~45!

and its matrix elements are
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^m1ur1~n!un1&5 (
n252 j

1 j

^m1 ,n2uc~n!&^c~n!un1 ,n2&.

~46!

This enables us to calculate the level of entanglement
tween the coupled tops at timen on using the definition

E~n!ª2Tr1@r1~n!lnr1~n!#, ~47!

where the set of eigenvalues$lni
, i 52 j , . . . ,1 j % is deter-

mined by first diagonalizing the (2j 11)-dimensional re-
duced density matrix at each timen. We then use

E~n!52 (
i 52 j

1 j

lni
ln lni

. ~48!

In the following we have chosen to use a value ofj 580 at
all times. The reasons for this choice are threefold. First
stated in the preceding section, we have foundj 580 to be
perfectly sufficient to enable our chosen quantum ini
states of Eq.~39! to distinguish between regular and chao
areas on the classical unit sphere. Second, this valuej
gave rise to reasonable running times, taking into consid
ation the fact that many runs were required to gather the d
Finally, such a relatively low value ofj ~see, for instance, the
much larger values used in Refs.@4,17,20,21#! certainly
means that we are far from the semiclassical regime. A
manifestations of chaos seen, therefore, are certainly
amples ofquantumchaos.

B. Linear increases in entanglement

We recall that in Fig. 1 for a single top we distinguish
two initial points on the unit sphere. These points — a ge-
nerically regular one marked by a square on that figure an
generically chaotic one marked by a triangle — we defin
as (u r ,f r)5(2.25,0.63) and (uc ,fc)5(0.89,0.63), respec
tively. Keeping these states in mind, we now wish to inv
tigate the rate at which three initial states of our quantiz
system become entangled. Thus, we choose three in
states where either~a! both states are initially regular,~b! one
is chaotic and the other regular, or~c! both are chaotic. Using
the notation of initial products of directed angular mome
tum states, see Eq.~40!, we therefore choose either~a!
uu r ,f r&uu r ,f r&, ~b! uuc ,fc&uu r ,f r&, or ~c! uuc ,fc&uuc ,fc&.

Using the iteration procedure described above, we n
set k53, fix our coupling constant«, and calculate the en
tanglement,E(t), for each of the three initial states. Th
results can be seen in Fig. 2: Initial product states where e
subsystem is located in a classically chaotic area of that
system’s phase space become entangled more quickly
those which have initially regularly located subsystems.
addition, the intermediate case of one subsystem being
otic and the other regular gives rise to an entanglement
which is also intermediate between these two extreme ca
The transition from situation~a! to situation~b! is shown in
more detail in Fig. 3 and we find little change in the rates
entanglement. We shall elaborate upon these findings in
conclusions to follow.

The existence of this intermediate regime between the
tremes of coupling two initially regular tops and two to
e-
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that are initially chaotic is of special interest and we sh
pursue this point henceforth. In fact, we will examine t
consequences of interpolating smoothly between the two
treme situations. To do so classically we must first note t
the initially regular and chaotic states marked in Fig. 3 dif
only in their polar angle,u. To go smoothly from regularity
to chaos, therefore, involves nothing more than changing
initial polar angle from 2.25 to 0.89. Quantum mechanica
the interpolation from the entanglement behavior when
initial state isuuc ,fc&uu r ,f r& to that when the initial state is
uuc ,fc&uuc ,fc& is achieved in a similar manner; we keep t
initial state of the first top chaotic, i.e.,uuc ,fc&, and begin
with the initial state of the second top being regular, i.
uu r ,f r&. We then calculate the rate of entanglement for i
tial states which differ only in the polar angle of the seco

FIG. 2. An illustration of how entanglement rates differ as
result of the choice of the initial states,uc(0)&, marked on the
figure. Here we have chosen«51023/3 as our coupling strength.

FIG. 3. Magnification of the regular-regular to chaotic-regu
transition of Fig. 2.
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top, u2, with the range being fromu252.25[u r to u2
50.89[uc .

We can now confirm the linear nature of the entanglem
increase with time by choosing three initial product sta
which differ only in their polar angle,u2. The centers of
these initial states are plotted in Fig. 4 using the same s
bols with which the associated increase of entanglement
time is marked in Fig. 5. To determine the linearity or ot
erwise, we have used linear regression to generate fits to
data, fromt530 onwards, which we have also plotted in F
5. The agreement is striking and the slopes so determ

FIG. 4. A magnified section of Fig. 1, concentrating on the a
around the stable island with the filled black square at its cente
that figure. The open circle, cross, and triangle in this figure m
the center of three initial directed angular momentum states of
second top. The corresponding linear entanglement rates are s
in Fig. 5.

FIG. 5. Entanglement rates corresponding to the initial state
the second top which are marked by the same symbols in Fig
Also shown are linear fits to the data fromt530 onwards.
t
s

-
th

he

ed

can now be used to compare the quantum entanglement
to measures of classical chaos determined from analag
initial classical distributions.

Our reason for choosingt530 is that in each of the thre
cases studied here it is larger than the steady-state time@6#,
tss, at which the entropy of each state begins to incre
linearly. In addition, it can be seen from Figs. 3 and 5 th
the more chaotic the initial state of the second top is,
lower is tss. This is consistent with the definition oftss in
Ref. @6#.

C. Classical-quantum correspondence

We are now in a position to compare quantum with cla
sical. First we determine the linear rates of entanglem
increase for initial values ofu2 on the unit sphere along th
geodesic fromu252.21 to u251.83. Very little change is
noted for lower values since then the initial state will
contained entirely in the chaotic sea~see Fig. 6!. We plot the
results in Fig. 7. Both the smoothness and the nature of
transition — the errors being actually smaller than the squ
symbols used to plot the data points — provide yet m
confirmation of the interpolation mentioned above.

A note of caution is necessary concerning the measure
classical chaos with which we will compare these quant
data. The phase space plots of Figs. 6 and 7 are useful
serve as guides to aid one in placing theinitial state. This is
so especially when the coupling is weak. However, they a
of course, plots of trajectories generated by the map ass
ated with asingle kicked top, Eq.~32!. The quantum en-
tanglement is generated by coupling the two tops and
must, therefore, consider the full classical equations of m
tion of our system, given by Eqs.~26!–~31!, when compar-
ing classical measures of chaos with quantum rates of
tanglement. However, now a complication arises: the sys
of coupled kicked tops is confined to a four-dimensional s
space of six-dimensional Euclidean space, i.e.,S23S2, and
this means that there will now betwo positive Lyapunov
exponents~and, of course, two negative exponents! associ-

a
in
k
e
wn

of
4.

FIG. 6. Linear entanglement rate versusu2, the initial polar
angle of the second kicked top. The tiny errors are a testamen
the excellent linearity found.
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ated with each initial condition (X1 ,Y1 ,Z1 ,X2 ,Y2 ,Z2). The
determination of both the positive Lyapunov exponents,l1
and l2 (l1>l2>0), is decidedly more tricky than the de
termination of the largest positive exponent only. We ha
used a method first proposed by Benettinet al. in Ref. @27#
~and well explained in Chap. 5 of Ref.@28#! to do so.

Corresponding to each initial direct product state in
quantum analysis, the linear entanglement rates of which
plotted in Fig. 6, are two initial classical distributions of th
type described in Sec. IV B. Sampling a point (X1 ,Y1 ,Z1)
from the distribution corresponding to the first top@always
centered at (uc ,fc) here# and a point (X2 ,Y2 ,Z2) from the
second@centered at (u2 ,fc) with u2 varying# gives rise to an
initial classical state (X1 ,Y1 ,Z1 ,X2 ,Y2 ,Z2) for which we
can then determine the sum of the two positive Lyapun
exponents,l11l2. We have carried out this procedure f
900 initial points in the distributions corresponding to ea
quantum initial state of Fig. 2.

In Fig. 7 we have plotted the linear entanglement rates
initial quantum product states versus the averaged~denoted
by angular brackets! Lyapunov exponents of the associat
initial classical distributions centerd at the same polar an
u2. If we restrict our attention to those points with conside
able overlaps with the chaotic sea~see Fig. 4!, i.e., points
with u2'2.13 and smaller, we find that a linear fit to the da
is quite a good one. Thus, our data lead us to propose
functional relationship

E~ t !'~aE^l11l2&1bE!t, t.tss, ~49!

where tss is the time at which the entanglement begins
increase linearly in time (tss<30 here!, and whereaE andbE
are functions of« and j. Here, we note,aE'0.044 andbE
'20.019. By differentiating both sides of Eq.~49! we find

dE

dt
'aE^l11l2&1bE , t.tss. ~50!

FIG. 7. Linear entanglement rate plotted against the avera
sum of the positive Lyapunov exponents for analagous initial c
sical distributions. Also plotted is a linear fit to the data away fro
the first three points.
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D. Interpretation

How are we to interpret the result given by Eq.~49!? It
says that after an initial timetss, after which a steady stat
will have been established, a state of the coupled kicked
will become entangled at a rate which is constant in time
the variables of the system are fixed, we have found that
rate is largely determined by the sum of the positi
Lyapunov exponents when averaged over the classical di
bution analagous to the initial quantum product state. Al
there is evidence to suggest that the rate depends linearl
this classical quantity.

If this interpretation is to be believed, then it leads one
propose an operational definition of chaos in the quant
regime. This is because a great advantage of choosing
quantum relative entropy as the measure of entanglem
Eq. ~3!, is the statistical interpretation afforded by it@23#. In
this context we now interpret Eq.~49! in the following way:
We consider the state of the system at any fixed timt
.tss and make a fixed numbern of measurements on it. I
all system variables such as«, j , and k are held fixed, the
probability,Pc , of confusing the state with a separable sta
decreases exponentially at a rate determined by the mea
of classical chaos,̂l11l2& defined above. Explicitly, we
write

Pc5exp„2nE~ t !…5exp~2nbEt !exp„2naE^l11l2&t….
~51!

VI. CONCLUSIONS

There is no classical behavior analagous to entanglem
it is unique to quantum mechanics. In this paper we ha
shown that this intrinsically quantum property exhibits
manifestation of classical chaos. In addition, the class
limit has not been taken in order to achieve this corresp
dence; the spin quantum number of each top has been ke
a relatively low value ofj 580 throughout.

In the Introduction to this paper, one of our stated ai
was to determine whether the phenomenon of a linear
crease of entropy with time with a rate determined by m
sures of the underlying classical chaos, for an environm
with a small number of degrees of freedom, was indee
general one. We addressed this question by considering
entanglement rate of coupled kicked tops which, as we h
seen, can be quantified by considering the von Neum
entropy of the reduced dynamics of a single top. By do
so, we have at least shown that coupling to a heat bath is
the only way of producing a linear entropy increase at
classically determined rate. However, as Fig. 7 shows, a
tain threshold of chaos in each part of the coupled sys
must be crossed before Eq.~49! becomes valid. Just as tem
perature needs to be high enough in the Zurek and Paz
proach for Eq.~49! to hold, so we require a certain level o
chaos in the system for the entanglement to increase line
with the ~locally averaged! Kolmogorov-Sinai entropy.

This, then, provides yet more broad support for the ori
nal conjecture of Zurek and Paz made in Refs.@6,7#, as gen-
eralized in Ref.@11#, and the environmental decoherence a
proach to quantum chaos in general. In addition, becaus
the statistical interpretation of the measure of entanglem
used here, we have been able to state the expected ex

ed
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mental consequences of the entropic result of Eq.~49!. In
short, the more chaotic the system, the less likely one i
confuse it with a separable state, and this is the case
greater degree as time passes.

At a qualitative level we believe that these results a
related to some quantum features of the kicked top mo
noted by Haakeet al. in Ref. @20#. The authors there consid
ered the minimum numberNmin of eigenvectors of the uni
tary single top evolution operator needed to exhaust the
malization of an arbitrary directed angular momentum st
to within 1%. This, they have found, correlates very w
with the largest Lyapunov exponent calculated for the po
at the center of the coherent state. Indeed, fork53 ~see Fig.
@6c# in Ref. @20#!, Nmin'10 at the center of a stable islan
whereasNmin'120 elsewhere, i.e., in the chaotic sea. Init
direct products of such states would therefore require an
creasing number of these eigenstates in an expansion in
si-

,
n-

n
ca
to
a

el

r-
e
l
t

l
n-
his

basis as one or more of the initial subsystems is moved f
a stable island into the chaotic sea. The subsequent intro
tion of the kick and interaction terms will then couple
greater number of eigenstates and a faster entanglement~loss
of subsystem coherence! might reasonably be expected
occur.

However, our crucial finding is the simple functional for
of Eq. ~49!. An intrinsically quantum-mechanical quantit
has been shown to have a functional dependence upo
measure of the chaos exhibited by the classical analog o
initial quantum state, even when the reservoir is a finite c
otic system.
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